

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

Direct reduction of chromite for ferrochrome production (DRC)

Dogan Paktunc, Dawei Yu & Samira Sokhanvaran

CanmetMINING, Natural Resources Canada Ottawa, Ontario, Canada

dogan.paktunc@canada.ca

ICDA 2018, April 25, 2018, Paris

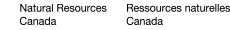
Canada

Natural Resources Ressources naturelles Canada

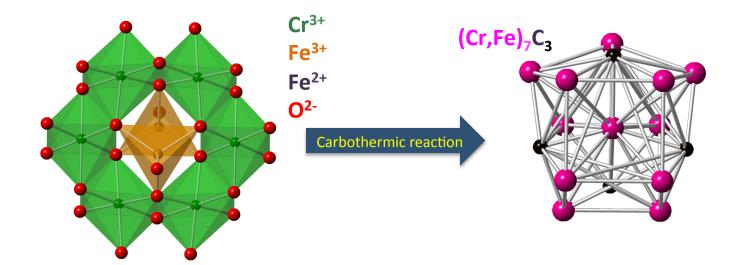
© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017.

Canadä

Chromite/Ferrochrome Project


- Ring of Fire (RoF) chromite deposits considered world-class and as such offer a significant potential for economic development and technological innovations
- In alignment with Government of Canada's commitment
 - responsible development of the RoF resources to maximize Canadian value and benefits from the deposits
- Project aims to develop new energy efficient and clean technologies with the following outcomes:
 - Companies equipped with technological capacity to bring their deposits to production with reduced CAPEX/OPEX
 - Canada is competitive as a new market entrant in chromite/ ferrochrome production
- C\$8.3 M funding over 6 years (2015-20)

Chromite/Ferrochrome Project


- Focussed on innovation generation of new knowledge
 - developing a fundamental-level understanding of carbothermic reactions and evolution of Cr and Fe species during reduction
 - identification of clean and technologically most advanced flow sheets
 - designing flow sheet of "made-in Canada" ferrochrome facility
- Addresses environmental impacts and health concerns
 - Cr⁶⁺ generation during processing
 - slag reutilization
 - minimizing carbon and mining footprints
- Aims for improved resource utilization
 - processing of lower grade ores
 - recovery of chromite fines

Ferrochrome production

 $\begin{array}{ll} (Mg_{0.4}Fe_{0.6})(AI_{0.6}Fe_{0.1}Cr_{1.3})O_4 + 3.66C \rightarrow 0.28Cr_{4.6}Fe_{2.4}C_3 + 0.3MgAI_{1.6}Mg_{0.4}O_4 + 2.8CO\\ chromite (RoF) & ferrochrome (RoF) \end{array}$

total energy needed to break M-O bonds >> total energy of Fe-Cr-C bonds Enthalpy of reaction (Δ H) is high (highly endothermic)

Ferrochrome smelting in submerged electric arc furnaces

- Smelting processes energy intensive
- Energy requirements can exceed 4 MWh/t¹
- GHG emissions can exceed 1 t CO₂ /t FeCr produced
- SEC reduced by about one third through pre-reduction (Premus)²

¹ Naiker & Riley 2006; Beukes et al. 2015

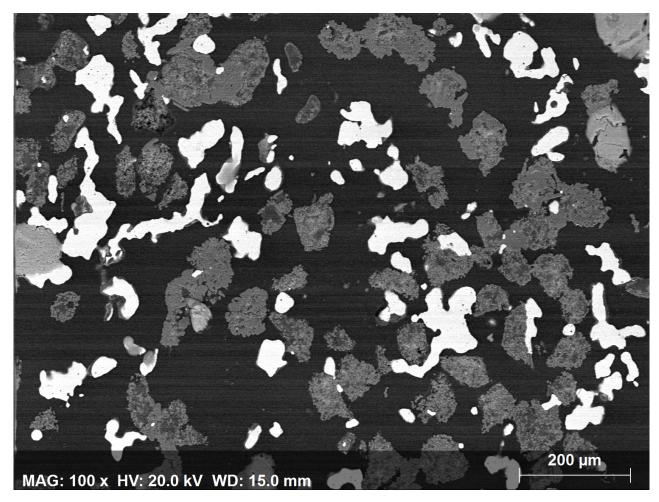
² Naiker 2007

Need for new alternate technologies

- Thermodynamic simulations and exploratory experimental work
 - Carbothermic reduction of chromite using various fluxes (800-1400 °C)
 - In-situ reduction and metallization occurring on carbon particles
 - Presence of molten media during reactions
 - Conceptualized segregation reduction mechanism
 - Screened fluxes (melting point <1300 °C > boiling point; low viscosity liquid slag
- Critical evaluation and testing of KWG patent (alkali-assisted reduction)
- Experimental studies using selected fluxes (alkalis, chlorides, fluorides, borates, SPL)
 - Objectives: high Cr metallization, fast kinetics, alloy growth, fundamental understanding
 - Experimental design parameters
 - Ore composition and particle size
 - Reductant type and particle size
 - Flux concentration; temperature; reduction kinetics
 - Feed form (i.e. pellets vs. loose)
- Advanced characterization studies
 - Synchrotron-based EXAFS, XANES, time-resolved HE-XRD

Process/engineering

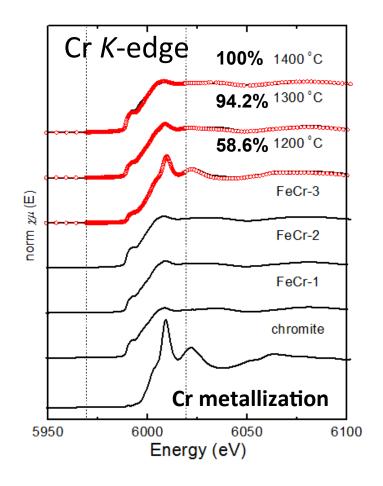
Advanced Photon Source Synchrotron Facility

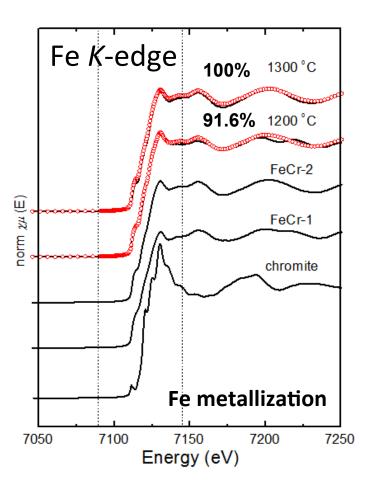

Direct reduction (DRC) at 1300 °C for 1-2h

- NaOH flux
 - Ore:Reductant:Flux 100:22:12 (by weight)
 - 85% Cr metallization; Cr_{4.7}Fe_{2.3}C₃
- CaCl₂ flux
 - Ore:Reductant:Flux 100:19:30 (by weight)
 - >94% Cr metallization; Cr_{4.7}Fe_{2.3}C₃
- Metallurgical waste product:
 - Ore:Reductant:Flux 100:23:30 (by weight)
 - >93% Cr metallization

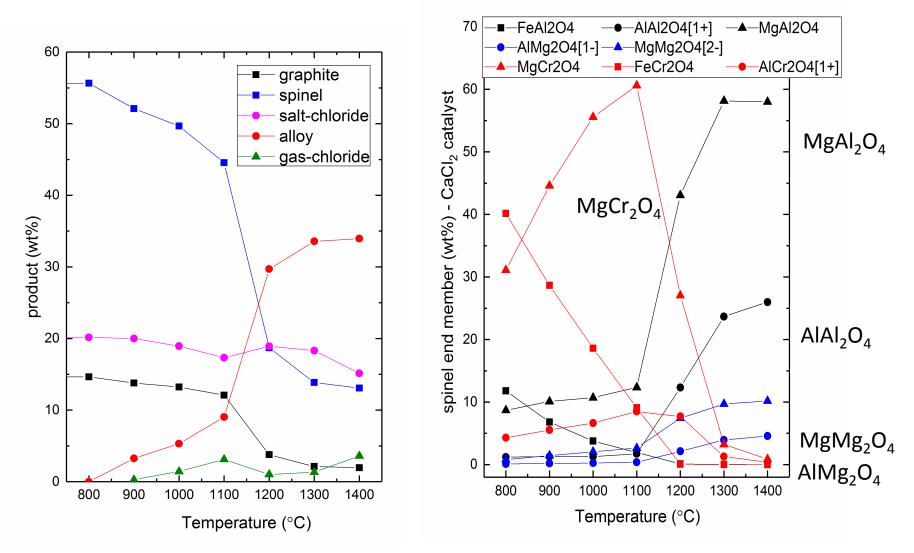
CaCl₂-assisted direct reduction (DRC)

Ore:Carbon:Flux 100:19:30; 1300 °C at 2h Degree of metallization: 98 % Cr & 100 % Fe

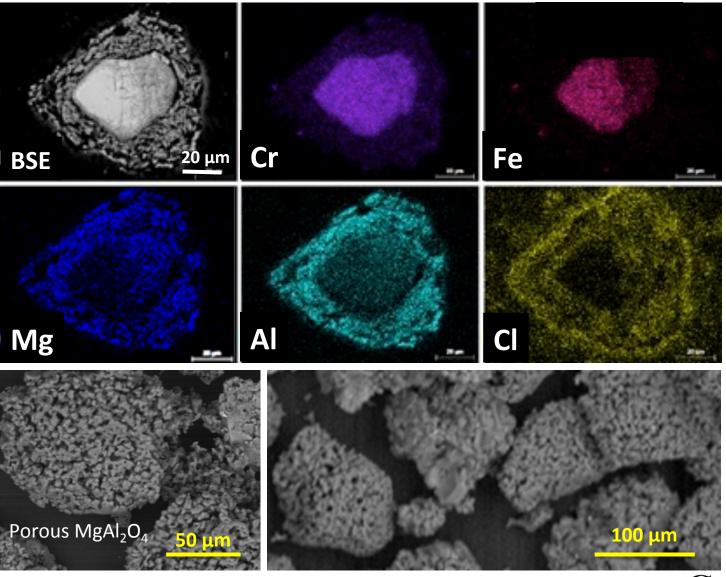



Canada

Natural Resources **Ressources naturelles** Canada


Degrees of metallization with CaCl₂ Synchrotron X-ray Absorption Spectroscopy (XANES)

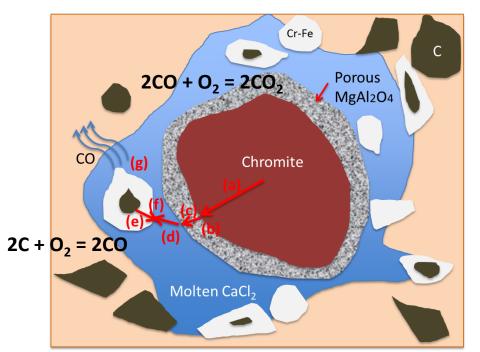
Thermodynamics of CaCl₂-assisted DRC



Ore:Carbon:Flux 100:22:30; chromite:84%, clinochlore 16%

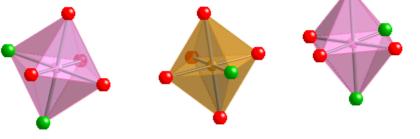
Canada

Dissolution of chromite during CaCl₂-assisted DRC

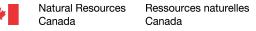

Canada

Natural Resources **Ressources naturelles** Canada

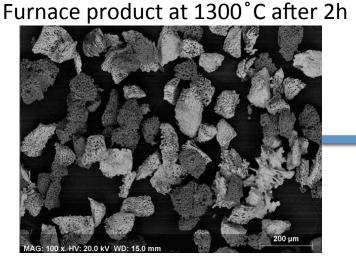
11


Mechanism of CaCl₂-assisted DRC

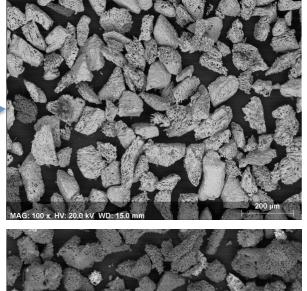
 Incongruent dissolution of chromite in molten CaCl₂

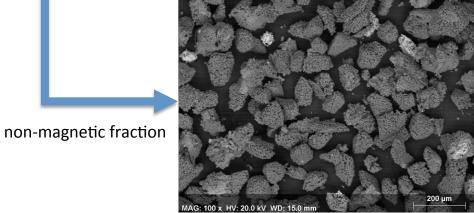

 $Cr_2O_3(\ell) + FeO(\ell) + MgAl_2O_4(s)$

Transport of Cr³⁺ and Fe²⁺ as ionic species (O²⁻, Cl⁻) in liquid & gas phase (segregation process)



- Reduction and metallization on solid reductant surfaces
- Shrinking cores of chromite and reductant as the reactions proceed



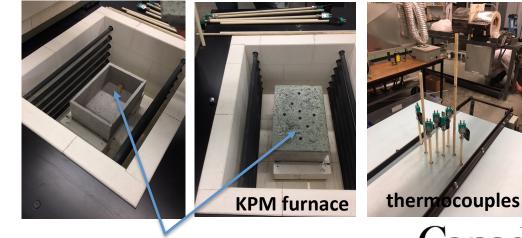

Liberation and recovery of FeCr (CaCl₂–assisted DRC)

Light grey: FeCr Dark grey: slag/gangue

magnetic fraction

Metal recoveries through elutriating tube: 83.5% Cr & 90.6% Fe (not optimized)

Process Flow Diagram (CaCl₂-assisted DRC)



CaCl₂ recovery 90%

Towards commercialization of DRC technology

- Review of furnace technologies for their potential adaption to DRC
 - Direct reduced iron technologies
 - Shaft (MIDREX), RK, RHF (FASTMET, Shenwu), Fluidized-bed reactors
 - natural gas, coal based
 - Pre-reduction/treatment of chromite (SRC, Premus)
- CFD modelling of select potential reactors (RK, RHF)
 - Heat transfer, reactive mass transport, residence time, throughput capacity, material flow, residence time, thermodynamics
 - Implications in terms of carbothermic reactions and degree of metallization
- Scaling-up
 - Batch reactor (~2 kg)
 - Heat transfer limitations
 - Oxygen ingress and flow

Canada

SiC-Al₂O₃-SiO₂ crucible: 29x20x13 cm

Summary of findings

- DRC at 1300 °C
 - High degrees of Cr metallization with NaOH, CaCl₂ and a metallurgical waste
 - Reduction rates are 3 times and greater than the rate with no-flux
 - Alloy particle growth controlled by reductant particle size and porosity
- FeCr production through flux-assisted DRC is possible
 - Segregation process minimizes the formation of fine alloy particles within chromite and enables liberation and subsequent physical separation
- Commercialization of DRC technology is promising
 - Two potential furnace technologies identified (RK and RHF)
 - Several challenges remain; however, operational experience with Premus RK is positive
 - Worst-case scenario would be utilization as a "pre-reduction" process with potential for significant reductions in SEC (i.e. >1.6 MWh/t FeCr)
 - Potential economic benefits would justify technology development

Acknowledgement

WG Resources

KPM (Kingston Process Metallurgy

cific Northwest Consortium chrotron Radiation Facility

RoF Cr_{4.6}Fe_{2.4}C₃

Canada

Natural Resources **Ressources naturelles** Canada

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017.